Dougherty Valley HS • AP Chemistry Acid-Base Equilibria

Inspired by Paul Groves

- **1.** $H_2O \rightleftharpoons H^+ + OH^ K_w = [H^+][OH^-] = 10^{-14}$ $pH = -log[H^+]$ pH+pOH = 14 $[H+] = 10^{-pH}$ Convert between pH, pOH, $[H^+]$, & $[OH^-]$
- **2.** Acid Ionization Constant (K_a):

 $HA + H_2O \rightleftharpoons H_3O^+ + A^ K_a = [A^-][H_3O^+]/[HA]$

Example: $HF + H_2O \rightleftharpoons H_3O^+ + F^-$

 $K_a = [F^-][H_3O^+]/[HF]$

3. Typical question: Given K_a and the starting concentrations of acid, find concentrations (or pH) of [H⁺] at equilibrium.

Example: K_a for acetic acid = 1.8 x 10⁻⁵. Find the pH of 0.100M acetic acid.

- 4. Polyprotic Acids: H₃PO₄, H₂SO₄, H₂C₂O₄, etc. The 1st dissociation is strong for H₂SO₄. When using Hess's Law with a polyprotic acid: $K_{overall} = K_{a1} \times K_{a2}$ Calculating pH, use K_{a1}
- **5.** Bronsted-Lowry Definitions. Acids = H+ donors; Bases = H+ acceptors Conjugate acid-base pairs.
- **6.** Base Ionization Constant (K_b):
 - $B + H_2O \rightleftharpoons BH^+ + OH^ K_b = [BH^+][OH^-]/[B]$ Example: F⁻ + H₂O \rightleftharpoons HF + OH⁻ $K_b = [HF][OH^-]/[F^-]$
- Salt solns can have pH's ≠ 7 (hydrolysis) ions from weak acids → basic solutions C₂H₃O₂⁻ + H₂O ⇒ HC₂H₃O₂ + OH⁻ ions from weak bases → acidic solutions NH₄⁺ + H₂O ⇒ NH₄OH + H⁺
- 8. $K_a \ge K_b = K_W = 10^{-14}$ only applies for **conjugate** acids & bases! Example: $K_a HC_2H_3O_2 = 1.8 \ge 10^{-5}$ $K_b C_2H_3O_2^- = 10^{-14} / 1.8 \ge 10^{-5}$

A BLUFFER'S GUIDE

- **9.** Percent ionization = [H⁺]_{eqilibrium} /[HA]_{initial} x 100
- **10.** Acid Strength-know the 6 strong acids: HCl, HBr, HI, HNO₃, HClO₄, and H₂SO₄ (removal of first H⁺ only)

(a) binary acids - acid strength increases with increasing size and electronegativity of the "other element". (NOTE: Size predominates over electronegativity in determining acid strength.) Examples: $H_2Te > H_2O \& HF > NH_3$

(**b**) Oxoacids - Acid strength increases with increasing:

- (1) electronegativity
- (2) number of bonded oxygen atoms
- (3) oxidation state of the "central atom".

Example: $HClO_4$ or $[O_3Cl(OH)]$

is very acidic

NaOH is very **basic** Acid strength also increases with *decreasing* radii of

the "central atom". Example: HOCl (bond between Cl and OH is covalent-making HOCl acidic) HOI (bond between I and OH is ionic--making HOI basic)

11.Lewis Acids and Bases:

(*This applies to coordinate covalent bonds.*) Lewis Acid--electron pair acceptor Lewis Base--electron pair donor "Have Pair...Will Share" – Lewis Base

In complex ion formation, metal ions are Lewis acids, and ligands are Lewis bases. Example: $Cu^{2+} + 4NH_3 \rightleftharpoons Cu(NH_3)_4^{2+}$ Cu^{2+} acts as an acid; NH₃ acts as a base.

12. Strong Bases: amide ion, $NH_2^$ hydride ion, H^- , methoxide ion, CH_3O^-

Based on a handout by William Bond, Snohomish HS